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Introduction

Deep learning (DL) has recently emerged as a potential platform for estimating 
linear and nonlinear optical phenomena of waveguides due to its high computa-
tional power, high-level structures and flexible usages. In this work, we 
performed a comparative analysis of four DL based Deep Neural Network 
(DNN) configurations for predicting and analyzing the effective mode area of 
a planar Silicon-rich Silicon Nitride (SRN) waveguide, its nonlinear coeffi-
cient, effective index and dispersion in the wavelength range of 0.65 µm – 3.05 
µm, waveguide core width of 1 µm – 5 µm and waveguide height of 0.3 µm – 
0.4 µm. We found that out of four DNN structures analyzed, ELU-ELU-Re-
LU-70-9000 structure showed superior performance in terms of mean squared 
error values. The computational time required with deep neural network (for 
training) and finite-element method (FEM) solutions is also compared and 
found that the training time of DNN structures increased with a number of 
epochs and due to the ReLU activation function. This simple and fast-training 
DNN employed here predict the output for unfamiliar parameter setting of the 
optical waveguide faster than traditional numerical simulation techniques.

Deep neural network, deep learning, silicon-rich nitride, planar waveguide, 
dispersion, nonlinearity, integrated photonics, nonlinear optics, ultrafast optics

Silicon-On-Insulator (SOI) technology facilitates the CMOS compatible fabri-
cation effectively to build low cost and scalable on-chip components similar to 
silicon photonics. Due to having four times higher Kerr nonlinearity, high 
refractive index and large energy bandgap in comparison with silica, 
Silicon-rich Silicon Nitride (SRN) chemically known as Si2N material pene-
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trated into the competitive market in the silicon chip industry. This material 
consists of 65% Silicon (Si) and 35% Nitrogen (N) contains a huge bandgap of 
2.05 eV which eliminates the two-photon absorption at 1.55 µm (Yang et al., 
2018). The Kerr nonlinearity of 2.8×10-13 cm2/W and refractive index of about 
3.1 to tailor dispersion. The loss is taken for merely material by ignoring 
substrate linkage is 6 dB/cm since of Si-H bonds formation for chemical vapor 
deposition (Wang et al., 2015).

In ultrafast nonlinear optics, designing an integrated photonics compatible 
efficient broadband supercontinuum (SC) source has been an increasing 
demand owing to the frequent usage of this light source in optical coherence 
tomography, spectroscopy, biomedical imaging, optical frequency metrology 
and various industrial sensing applications (Jones et al., 2000; Mirnov et al., 
2006; Hartl et al., 2001). SRN material-based optical waveguide has the ability 
to produce SC spectrum up to mid-infrared (MIR) region (Karim et al., 2020a; 
Karim et al., 2020b). Additionally, due to having a low Raman response, SRN 
is highly coherent spread over the whole SC spectrum (Wang et al., 2015).

For efficient waveguide design to be used for producing ultra-broadband 
SC generation up to the MIR region, specific waveguide modal properties, 
including effective index (neff), effective mode area (Aeff), dispersion (D) and 
non-linearity (γ) can be easily controlled by changing width and thickness 
(height) of a planar waveguide in the wavelength region of interest (Karim et 
al., 2020a; Karim et al., 2020b). This is because the broadening of SC is depen-
dent on the group-velocity dispersion within the waveguide provided with the 
position of pump wavelength and peak power. This broadening can further be 
extended far into the MIR spectrum by adopting a tapering approach during 
waveguide design. Selective enhancement of spectral flatness across the 
spectral coverage can also be observed by applying the tapering approach (Zia 
et al., 2020; Singh et al., 2019; Ciret & Gorza, 2017) on silicon made core 
material-based waveguides.

To design and optimize the device parameters of the optical waveguide 
mentioned in the above paragraph, sophisticated numerical methods such as 
the finite difference method (Yu & Chang, 2004) and finite element method 
(FEM) (Cucinotta et al., 2002) are usually used. However, these methods 
necessitate a substantial amount of power of a personal computer’s Central 
Processing Unit (CPU) when dealing with intricate optical waveguide layouts 
which require be simulated several time periods to settle with an optimized 
design. These complex waveguide layouts have their own input design parame-
ters to be optimized which makes the whole iterative process even more 
complex and time-consuming. One way to solve this problem is to estimate the 
parameters using prediction algorithms and a deep learning-based deep neural 
network (DNN) can readily give a way out to optimize the parameters quickly 
with very good accuracies.  Deep learning has become a vital approach to 
solving a big-data-driven problem. It has found tremendous applications in 
computer vision and natural language processing (Huang et al., 2020). Deep 
learning has received much attention worldwide because it can efficiently 
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process and analyze a vast number of datasets based on the multilevel abstrac-
tion of data using hierarchically structured layers.

Over the last couple of years, in photonics, Deep Neural Network (DNN) 
has been employed to improve the state-of-the-art photonics application in 
optical fiber sensing, laser characterization, quantum communications, imag-
ing and device design (Zibar et al., 2017; Rivenson et al., 2017; Sinha et al., 
2017; Turduev et al., 2018; Malkiel et al., 20017; Ma et al., 2018; Liu et al., 
2018; Kojima et al., 2017). Very recently, two of the research works have been 
published (Chugh et al., 2019a; Chugh et al., 2019b) on optimizing the PCF’s 
optical parameters using DNN. However, they have dealt with the limited size 
of the dataset due to the parameter settings, and also their data is not highly 
nonlinear and not well-distributed over the wavelength region considered. 
Moreover, these articles were limited in tuning the training and optimization 
hyperparameters in a wide range to produce the optimized design. 
To overcome the above-mentioned limitations, we have made the contributions 
as pointed out below.

In this article, four distinct configurations of DNN are applied on highly 
nonlinear optical parametric simulated training data of SRN waveguide and 
predicted on separate set of test data where the DNNs never seen those test data 
before during training. We predicted effective mode index (neff), effective mode 
area (Aeff), nonlinear coefficient (γ) and group-velocity dispersion (D) parame-
ters using those DNNs, evaluated and compared the performance of the DNNs 
in terms of mean squared error. The next section describes about the modeling 
and method, where SRN waveguide model and also the DNN structures are 
described. The subsequent sections explain the results and discussion. This 
article concludes with a conclusion section included with future works.

In this section, we first describe our 3-mm-long SRN waveguide and the wave-
guide structure is shown in Fig. 1. 

1) We considered a completely different material (SRN waveguide) for 
this article and optimized its parameters using DNN.
2) We generated a well-balanced and comparatively larger dataset having 
highly nonlinear input datapoints distributed over the wavelength region 
considered. 
3)  We considered a variety of structures of simple DNN, just varying 
their structural and also the optimization hyperparameters, to reach to an 
optimized design of SRN waveguide.
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Modeling and Method

Figure 1.  SRN Waveguide
Source: The authors.
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The waveguide’s core, upper and lower cladding are made of Si2N, air and 
MgF2, respectively. To compute the refractive index of proposed SRN and 
MgF2 materials, the Sellmeier equation (Karim et al., 2020b) is considered. In 
this study, a set of SRN waveguides geometric data of width of core (W), 
height of core (H) and wavelength (λ) have taken as input variables and neff, 
Aeff, γ and D as output variables to make a labelled training dataset. We have 
considered a short wavelength ranging 0.65 µm – 3.05 µm (0.5 µm in steps), 
core width finely distributed within 1 µm – 5 µm (0.25 µm in steps) and core 
thickness of 0.3 µm – 0.4 µm (0.10 µm in steps). Subsequently, neff, Aeff, γ and 
D values are calculated using FEM solution based on COMSOL Multiphysics® 
for 8789 samples. We used extremely fine mesh in COMSOL and mesh 
elements of 17782. The above-mentioned parameters are calculated using the 
equations (Obayya et al., 2005) below.

where, E is the transverse electric field vector, ∫∫ is the area bounded by the 
computing domain. Re signifies the real part and c is the speed of light in free 
space.

Secondly, we have designed and varied the structure of a DNN having three 
hidden layers and each layer contains either 50 or 70 neurons. We found that 
increasing the number hidden layers and their associated nodes contributed 
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Figure 2.  DNN Structure
Source: The authors.
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very insignificantly in the error value and therefore we made a good starting 
value of 50 for number of nodes and restricted our models trying a different 
number of 70 hidden nodes in the three hidden layers. The general network 
structure is shown in Fig. 2. These hidden layers are interlocked as a whole, 
which means layers’ mimic human brain where neurons maintain an intercon-
nectivity between each and every layers. We used pytorch machine learning 
framework to design the DNNs. We have a total data point of 8789 which is 
generated through COMSOL Multiphysics® numerical simulation. We have 
divided the whole dataset into training data (90% of total data), validation data 
(10% of total data). We settled with 7910 training data points and 879 valida-
tion data point. The validation data is randomly selected from the training data 
to validate the performance of the neural network. Also, for the test dataset, we 
have simulated a new range of data for the width of the core material 2.3 µm 
corresponding to core height of 0.335 µm and new wavelength spanning 
between 0.675 µm and 3.075 µm. We got 47 datapoints as test data. All the 
training, validation and testing data points are normalized between 0 and 1 
without distorting differences in the ranges of values and to avoid losing infor-
mation.

Our target is to choose the best combination of DNN structural hyperpa-
rameters to optimize the waveguide structure. Another vital reason is to see the 
effect of changing each hyperparameters on the output. The list hyperparame-
ters and how it evolves in each epoch of 5000, 7000 and 9000 are given in 
Table 1. The epochs are selected by the user targeting to reduce the overfitting 
and underfitting of data on the model.

It is evident from Table 1 that, for training data, exponential linear unit (ELU) 
activation function is used in the first two hidden layers as it can take negative 
inputs and rectified linear unit (ReLU) and parametric rectified linear unit 
(PReLU) are used in the last hidden layer interchangeably. An Adam optimizer 
with a learning rate of 0.0001 has been used to adjust the weights during the 
training process. We also have used batch normalization after the first hidden 
layer as it makes faster and more stable training through the normalization of 
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Source: The authors.

Table 1. List of Hyperparameters

No of 
epochs 

No of 
layers 

No of 
nodes 

Activation 
function 

Dropout Optimizer Batch 
normalization 

5000 3 50 ELU-ELU-
ReLU 

0.1 Adam After hidden 
layer 1 

5000 3 50 
ELU-ELU-

PReLU 0.1 Adam 
After hidden 

layer 1 

7000 3 50 
ELU-ELU-

ReLU 0.1 Adam 
After hidden 

layer 1 

9000 3 70 
ELU-ELU-

ReLU 
0.1 Adam 

After hidden 
layer 1 

 



In this section, we evaluated DNN structures using validation data and test 
data. Also, computational time is compared between DNN models and complex 
numerical simulations. Initially, we have run the DNN models for 50 neurons 
in each of three hidden layers and 5000 epochs. We used combination of 
ELU-ELU-ReLU activation functions in first, second and third hidden layer 
respectively. For the sake of explanation, we named this ELU-ELU-Re-
LU-50-5000 as “DNN architecture 1.” Additionally, for the same number of 
layers and hidden nodes, we used ELU-ELU-PReLU combination to see the 
effect of these functions in the last hidden layer on accuracy and computational 
time required. We named this ELU-ELU-PReLU-50-5000 as “DNN architec-
ture 2.” We then finally ran ELU-ELU-ReLU-50-7000 (DNN architecture 3) 
and ELU-ELU-ReLU-70-9000 (DNN architecture 4). For each of the above 
DNN architectures, we computed and predicted neff, Aeff, γ and D and it is 
described in the following subsections.

Prediction of Aeff

Results and Discussion

the input layer. Once trained, the DNN model estimates outputs after each 
epoch. The difference between the predicted and original output is calculated 
using mean squared error (MSE). The back-propagation algorithm (LeCun et 
al., 1988) is used on the difference iteratively to create new weights of the 
interconnected hidden layers for each and every iteration. When our DNN 
model gets optimized with training data through having a steady mean squared 
error surface, we produce designated outputs for the brand new input optical 
waveguide parameters (as test data) which is not given to the model during the 
training term.

The prediction of effective mode area first comes with the analysis of training 
loss and validation loss for architecture 1, architecture 2, architecture 3 and 
architecture 4. These are shown in Fig. 3. 

(a)
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(b)

(c)

(d)

Figure 3.  MSE Curves for a) Architecture 1; b) Architecture 2; 
c) Architecture 3; and d) Architecture 4.
Source: The authors.



It is depicted from Fig. 3 that DNN models have well trained and validated with 
training and validation data respectively. Here, MSE values change through 
epochs and give the lowest values possible. As expected, MSE curves converge 
faster for 7000 and 9000 epochs compared to 5000 epochs and it is seen in Figs. 
3 (c) and 3(d). There is no effect seen on MSE visually, by other parameters, 
considered in the architectures.  Figure 4 shows a scatter plot of the Aeff values 
of the dataset used for training, validation and testing of the DNN models. 
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It is described in Fig. 5 that for the epochs 5000, γ values are poorly trained on 
architecture 1 and 2, especially after 800 W-1m-1 and it is verified in Figs. 5(a) 
and 5(b). However, it is observed in Figs. 5(c) and 5(d) that training data points 
after 800 W-1m-1 got closer to ideal values of for epochs 7000 and 9000. This 
is also validated that validation data do not deviate much from the y=x line for 
data values up to 400 W-1m-1. Also, all the architectures predict test γ values, 
more or less, well as most of the black circles aligned well to the y=x line. 

(d)
Figure 4.  True and Predicted Values of Aeff for a) Architecture 1; 
b) Architecture 2; c) Architecture 3; and d) Architecture 4.
Source: The authors.

These figures explain that how well the DNN predicts the Aeff by indicating 
how close or far are the circled data points to the ideal black solid line. As we 
initially experimented, it is found that training data points are evenly distribut-
ed throughout the wavelength range considered and closer to ideal line when 
we applied ELU-ELU-ReLU than we applied ELU-ELU-PReLU, and this is 
visible in Figs. 4(a) and 4(b). This is because ReLU has more data generaliza-
tion capability compared to PReLU. On the other hand, ELU avoided the dead 
neurons in the deep structured DNN networks. However, training data started 
deviating from the ideal line both for ELU-ELU-ReLU and ELU-ELU-PReLU 
after 2 µm2. Later we understood that increasing the number of epochs to 7000 
and 9000, made the training data test data perfectly fit to the ideal line which 
means architecture 3 and 4 predict Aeff quite accurately. This is depicted in 
Figs. 4(c) and 4(d). This is supported by the fact that MSE drops from 0.000346 
(ELU-ELU-ReLU-50-5000) to 0.000023 (ELU-ELU-ReLU-70-9000)

Prediction of γ
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(a)

(b)
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The prediction of effective mode area first comes with the analysis of training 
loss and validation loss for architecture 1, architecture 2, architecture 3 and 
architecture 4. These are shown in Fig. 3. 

(d)
Figure 5.  True and Predicted Values of γ for a) Architecture 1; 
b) Architecture 2; c) Architecture 3; and d) Architecture 4.
Source: The authors.

These figures explain that how well the DNN predicts the Aeff by indicating 
how close or far are the circled data points to the ideal black solid line. As we 
initially experimented, it is found that training data points are evenly distribut-
ed throughout the wavelength range considered and closer to ideal line when 
we applied ELU-ELU-ReLU than we applied ELU-ELU-PReLU, and this is 
visible in Figs. 4(a) and 4(b). This is because ReLU has more data generaliza-
tion capability compared to PReLU. On the other hand, ELU avoided the dead 
neurons in the deep structured DNN networks. However, training data started 
deviating from the ideal line both for ELU-ELU-ReLU and ELU-ELU-PReLU 
after 2 µm2. Later we understood that increasing the number of epochs to 7000 
and 9000, made the training data test data perfectly fit to the ideal line which 
means architecture 3 and 4 predict Aeff quite accurately. This is depicted in 
Figs. 4(c) and 4(d). This is supported by the fact that MSE drops from 0.000346 
(ELU-ELU-ReLU-50-5000) to 0.000023 (ELU-ELU-ReLU-70-9000)

Prediction of neff

Karim et al. 27
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The dispersion (D) of waveguide characterization is a vital nonlinear optical 
phenomenon for many nonlinear optics applications, such as SC generation 
and frequency comb generation. The true and predicted values for training, test 
and validation are portrayed in Fig. 7. 

When PReLU comes into play in the last hidden layer, data gets overfitted. 
According to Figs. 6(c) and 6(d), this situation is not seen for architecture 3 and 
4 as number of iterations of 7000 and 9000 along with number of hidden nodes 
have made the training data and lot closer to the ideal line although few of the 
training points in the beginning still did not fit to the straight line. For the same 
reason, test data was well predicted by the model which was never given to the 
model before during training and this is shown in Figs. 6(c) and 6(d).

Prediction of D

(d)

(a)

Figure 6.  True and Predicted Values of neff for a) Architecture 1; 
b) Architecture 2; c) Architecture 3; and d) Architecture 4.
Source: The authors.
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Figure 7.  True and Predicted Values of D a) Architecture 1; 
b) Architecture 2; c) Architecture 3; and d) Architecture 4.
Source: The authors.

(b)

(c)

(d)
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In this section, we compare the actual and predicted values of all the optical 
properties mentioned in the previous sections in terms of the wavelength 
considered for testing architecture 4. This is represented in Fig. 8. 

It is very clear from Figs. 7(a) and 7(b) that dispersion values are trained poorly 
on architecture 1 and this situation accelerated in architecture 2 due to data 
generalization problem created by PReLU activation function. The training 
data points which are especially in negative region, are located far away from 
the ideal solid black line as the network did not learn the inherent alpha value. 
On the contrary, as the architecture 3 went through 7000 iterations, most of the 
initial red circled data (up to -3 ps/nm/m) came closer to y=x line. However, 
not that much of them to count in and this observed in Fig. 7(c). Moreover, due 
to having higher number of hidden layers and being run for 9000 epochs, archi-
tecture 4 fit the training data well for the whole wavelength considered. Our 
designed architecture 4 fit well to the test data given that it runs for 9000 
epochs. This is well seen in Fig. 7(d).

Comparison of Actual and Predicted Values

(a)

(b)
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It is clear from Fig. 8(a) that predicted values of Aeff follow the actual line 
(black solid line) and it increases with wavelength. It is also observed that 
architecture 4 predicted γ and neff quite well in whole wavelength region 
considered. However, D values did follow the actual values for wavelength 
only until 1.5 µm.   

Figure 8. Optical Properties Vs Wavelength for a) Aeff ; b) γ; c) neff ;
and d) D.

Table 2. Training Time for Different DNNs

Source: The authors.

Source: The authors.

(c)

(d)

Layers Nodes Activation 
functions 

Epochs Training time 
(sec) 

3 50 ELU-ELU-
ReLU 

5000 66.86 

3 50 ELU-ELU-
PReLU 

5000 58.51 

3 50 ELU-ELU-
ReLU 

7000 90.58 

3 70 ELU-ELU-
ReLU 

9000 164.81 
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The training and testing of the DNN model have run on a personal computer 
(PC) having the configuration of Intel Core i7 CPU @ 2.60 GHz, 16 GB RAM, 
NVIDIA GeForce RTX 2060 1 core GPU. The PC runs on Windows 10 operat-
ing system. The training actually runs on the GPU. The training time for our 
four architectures is given in Table 2. The time to train the DNN model relies 
on the dataset size and different training hyper-parameters. It is obvious that 
training time increases with increasing the number of layers and hidden nodes. 
In our designed models of DNN, as we fix the number of hidden layers, 
increasing the number of epochs from 5000 to 7000 and 9000 have increased 
the training time on large scales. We noticed from Table 2 that applying 
PReLU in the last hidden layer requires less training time than applying ReLU. 
This is because it considers the negative values of input. On the other hand, 
numerical simulation requires 2222 seconds for one particular structural 
parameter (W and H) of waveguide for the desired wavelength region, which 
can even take longer for finer values of such parameters during the optimiza-
tion. Therefore, it can be said that training and optimizing the waveguide 
parameters are way faster than computing and optimizing the parameters using 
numerical simulation techniques.

Computational Performance

In this paper, we have designed and tuned four different deep neural network 
structures based on the deep learning concept. We predicted four general but 
vital optical parameters of the SRN planar waveguide using our designed deep 
learning (DL) models. We saw that the MSE value of training and validation 
accuracies decreases very sharply with the increase of the number of epochs. It 
is found that our designed DL architectures predicted the four characteristic 
nonlinear optical parameters well with test data generated for a specific wave-
length range, width and height of waveguide which were never exposed to 
models during the training phase. We found when neural networks go deep into 
the structures with an increased number of nodes, their prediction accuracies 
increase tremendously. It was also evident that being one of the important 
hyperparameters, activation function also contributed to the prediction power 
of DNN structures. We can conclude that ELU-ELU-ReLU-70-9000 structure 
works best among four of the structures analyzed. With this best structure, we 
further verified the predicted and actual data of all parameters against the 
wavelength and we found that this architecture is somewhat shallow to predict 
dispersion in longer wavelength regions. In another part, we described that 
deeper structures need more time to be trained. This research opened a pathway 
to deliver more research works in the future which can consider more deep 
networks with proper tuning to predict the nonlinear optical parameters 
especially neff, as it should be predicted with precision and accuracy to generate 
supercontinuum spectra. Also, in future, we will include more DNN models 
such as LSTM/Bi-LSTM or combinations, conventional machine learning 
models to make a rigorous comparison among these models, so that the 
machine learning researchers in photonics will get a clear idea on which 
models are best for different applications available.

Conclusion and Future Works
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